СДАМ ГИА: РЕШУ ВПР
Образовательный портал для подготовки к работам
Математика для 5 класса
математика–5
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 14 № 386

В классе 25 учащихся. Из них 20 занимаются английским языком, 17 увлекаются плаванием, 14 посещают математический кружок. Докажите, что в классе найдётся хотя бы один ученик, который занимается английским языком, увлекается плаванием и посещает математический кружок.

Запишите решение и ответ.

Решение.

Решение: всего в классе 25 человек. Не занимаются английским языком человек. Если бы эти учащиеся занимались только плаванием, то их было 5 человек, но таких в классе 17, значит, найдутся хотя бы 12 человек, которые занимаются и английским языком и плаванием. Также рассуждаем про математический кружок: хотя бы 9 человек, которые занимаются английским языком, ходят в математический кружок. Тогда все остальные 25 - 9 = 16 человек могут заниматься плаванием, но не ходит в математический кружок. Однако 17 - 16 = 1, поэтому как минимум 1 человека занимаются английским языком, увлекаются плаванием и посещают математический кружок.

Источник: Шарыгин И. Ф. Задачи на смекалку. 5-6 классы, 2010 год.